Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018
405 days ago

Data science is the big draw in business schools
578 days ago

7 Effective Methods for Fitting a Liner
588 days ago

3 Thoughts on Why Deep Learning Works So Well
588 days ago

3 million at risk from the rise of robots
588 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
315390 views

Here's why so many data scientists are leaving their jobs
81819 views

2018 Data Science Interview Questions for Top Tech Companies
79239 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
77655 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
62394 views

Researchers Test An Optical Chip For Deep Learning

By Nand Kishor |Email | Jun 15, 2017 | 5754 Views

The computer chip learned to recognize four basic vowel sounds, and it guessed correctly three out of every four times when tested. Other processors are more accurate - correct around 90% of the time - but few are as unique.

On Monday, researchers at the Massachusetts Institute of Technology revealed that new chip, called a nanophotonic processor, which uses light instead of electricity to solve the unforgiving math at the heart of machine learning. Using microscopic lenses instead of transistors, it could vastly improve algorithms that learn to make decisions in smartphones to sensors.

The ten researchers, writing in the journal Nature Photonics, said that the experimental chip could be carefully tuned to control light and solve so-called matrix multiplications much faster and more efficiently than traditional computers and graphics chips. The idea is that light moves much faster than the electrons cascading through transistors.

These calculations are vital to deep learning algorithms, which mimic how the brain learns from an accumulation of examples to improve voice recognition, image classification, or autonomous driving software. But these multiplication tables not only take the most time but also consume the most power.

The optical chip contains multiple waveguides that shoot beams of light at each other simultaneously, creating interference patterns that correspond to mathematical results. The proof-of-concept performs matrix calculations with a thousandth of the power used by traditional chips, the researchers said.

"The chip, once you tune it, can carry out matrix multiplication with, in principle, zero energy, instantly," said Marin Soljacic, an electrical engineering professor at MIT, in a statement. The accuracy leaves something to be desired for making out vowels, but the nanophotonic chip is still a work-in-progress.

Years from now, it could be useful "whenever you need to do a lot of computation but you don't have a lot of power or time," said Nicholas Harris, an author of the paper, in a statement. It could also improve signal processing because light, which is analog, would not have to be converted into a digital signal.

The nanophotonic chip is still not a complete system, and Soljacic said that further advances would only be possible with more time and investment. "We've demonstrated the crucial building blocks but not yet the full system," he said in a statement.

Other platforms have targeted matrix multiplications, which help strengthen links between the virtual neurons in deep learning software. The Volta graphics chip released by Nvidia last month, for instance, contain specialized "tensor cores" that solve matrix multiplication for training and inferencing faster and more efficiently than other chips. Continue Reading>>

Source: ElectronicDesign