...
Full Bio
Use Machine Learning To Teach Robots to Navigate by CMU & Facebook Artificial Intelligence Research Team
178 days ago
Top 10 Artificial Intelligence & Data Science Master's Courses for 2020
179 days ago
Is Data Science Dead? Long Live Business Science
207 days ago
New Way to write code is about to Change: Join the Revolution
208 days ago
Google Go Language Future, Programming Language Programmer Will Get Best Paid Jobs
529 days ago
Top 10 Best Countries for Software Engineers to Work & High in-Demand Programming Languages
708936 views
Highest Paying Programming Language, Skills: Here Are The Top Earners
667215 views
Which Programming Languages in Demand & Earn The Highest Salaries?
472161 views
Top 5 Programming Languages Mostly Used By Facebook Programmers To Developed All Product
429177 views
World's Most Popular 5 Hardest Programming Language
363111 views
How Will You Be Get Hired As A Data Scientist? In short Analysis Of My LinkedIn Messages For Data Scientist


import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
messages = pd.read_csv("messages.csv")
messages.head()

## properly format the date and set it as the index
messages['Date'] = [datetime.strptime(x, '%m/%d/%y, %I:%M %p') for x in messages['Date']]
## keep only message sent to me
df = messages[messages['Direction'] == "INCOMING"]
## keep only the first message everyone sent me
df = df.drop_duplicates('From', keep = 'last')
df = df.set_index(pd.DatetimeIndex(df['Date']))
total_msg = len(df)
min_date = min(df.index)
mean_msg_month = df.resample('MS').size().mean()
mean_msg_week = df.resample('W-MON').size().mean()
print("Earliest Message: %s" % min_date)
print("Total All Time Incoming Messages: %s" % total_msg)
print("Avg # of Messages per Month: %s" % mean_msg_month)
print("Avg # of Messages per Week: %s" % mean_msg_week)


mean_msg_month = df[df.index > '2017-01-01'].resample('MS').size().mean()
mean_msg_week = df[df.index > '2017-01-01'].resample('W-MON').size().mean()
print("Avg # of Messages per Month: %s" % mean_msg_month)
print("Avg # of Messages per Week: %s" % mean_msg_week)

from wordcloud import WordCloud, STOPWORDS
stopwords = set(list(STOPWORDS) + ['hi','kyle','will','thank','thanks'])
df = messages[messages['Direction'] == "INCOMING"]
df = df[pd.notnull(df['Content'])]
wc = WordCloud(background_color='white',
stopwords=stopwords,
).generate(' '.join(list(df['Content'])))
plt.imshow(wc)
plt.axis("off")
plt.show()
import spacy
from spacy import displacy
nlp = spacy.load('en_core_web_sm')
text = df['Content'][i]
displacy.render(nlp(text), jupyter=True, style='ent')

positions = ['data scientist',
'data analyst',
'data engineer',
'senior data scientist']
text = ' '.join(list(df['Content'])).lower()
for job in positions:
count = text.count(job)
print(job + ': %d' % count)
