...

Full Bio

Google Go Language Future, Programming Language Programmer Will Get Best Paid Jobs

40 days ago

New Coder Tool Promises to Turbo-Charge Coding In Major Programming Language

41 days ago

Why Many Companies Plan To Double Artificial Intelligence Projects In The Next Year

41 days ago

Why 75% SMBs Are Not Worried About Artifical Intelligence Killing Their Jobs

41 days ago

Interview Study Guide for Data Science To Get Job Quickly

44 days ago

Highest Paying Programming Language, Skills: Here Are The Top Earners

634638 views

Top 10 Best Countries for Software Engineers to Work & High in-Demand Programming Languages

454641 views

Which Programming Languages in Demand & Earn The Highest Salaries?

440988 views

50+ Data Structure, Algorithms & Programming Languages Interview Questions for Programmers

260058 views

100+ Data Structure, Algorithms & Programming Language Interview Questions Answers for Programmers - Part 1

222504 views

### How Hitchhiker's Guide Workes For Machine Learning in Python

**Featuring implementation code, instructional videos, and more**

- Linear Regression
- Logistic Regression
- Decision Trees
- Support Vector Machines
- K-Nearest Neighbors
- Random Forests
- K-Means Clustering
- Principal Components Analysis

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

%matplotlib inline

from sklearn import linear_model

df = pd.read_csv(â??linear_regression_df.csvâ??)

df.columns = [â??Xâ??, â??Yâ??]

df.head()

sns.set_style(â??ticksâ??)

sns.lmplot(â??Xâ??,â??Yâ??, data=df)

plt.ylabel(â??Responseâ??)

plt.xlabel(â??Explanatoryâ??)

trainX = np.asarray(df.X[20:len(df.X)]).reshape(-1, 1)

trainY = np.asarray(df.Y[20:len(df.Y)]).reshape(-1, 1)

testX = np.asarray(df.X[:20]).reshape(-1, 1)

testY = np.asarray(df.Y[:20]).reshape(-1, 1)

linear.fit(trainX, trainY)

linear.score(trainX, trainY)

print(â??Coefficient: \nâ??, linear.coef_)

print(â??Intercept: \nâ??, linear.intercept_)

print(â??RÂ² Value: \nâ??, linear.score(trainX, trainY))

predicted = linear.predict(testX)

from sklearn.linear_model import LogisticRegression

df = pd.read_csv(â??logistic_regression_df.csvâ??)

df.columns = [â??Xâ??, â??Yâ??]

df.head()

sns.set_style(â??ticksâ??)

sns.regplot(â??Xâ??,â??Yâ??, data=df, logistic=True)

plt.ylabel(â??Probabilityâ??)

plt.xlabel(â??Explanatoryâ??)

X = (np.asarray(df.X)).reshape(-1, 1)

Y = (np.asarray(df.Y)).ravel()

logistic.fit(X, Y)

logistic.score(X, Y)

print(â??Coefficient: \nâ??, logistic.coef_)

print(â??Intercept: \nâ??, logistic.intercept_)

print(â??RÂ² Value: \nâ??, logistic.score(X, Y))

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X1â??, â??X2â??, â??X3â??, â??X4â??, â??Yâ??]

df.head()

from sklearn.cross_validation import train_test_split

decision = tree.DecisionTreeClassifier(criterion=â??giniâ??)

X = df.values[:, 0:4]

Y = df.values[:, 4]

trainX, testX, trainY, testY = train_test_split( X, Y, test_size = 0.3)

decision.fit(trainX, trainY)

print(â??Accuracy: \nâ??, decision.score(testX, testY))

from IPython.display import Image

import pydotplus as pydot

dot_data = StringIO()

tree.export_graphviz(decision, out_file=dot_data)

graph = pydot.graph_from_dot_data(dot_data.getvalue())

Image(graph.create_png())

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X4â??, â??X3â??, â??X1â??, â??X2â??, â??Yâ??]

df = df.drop([â??X4â??, â??X3â??], 1)

df.head()

from sklearn.cross_validation import train_test_split

support = svm.SVC()

X = df.values[:, 0:2]

Y = df.values[:, 2]

trainX, testX, trainY, testY = train_test_split( X, Y, test_size = 0.3)

support.fit(trainX, trainY)

print(â??Accuracy: \nâ??, support.score(testX, testY))

pred = support.predict(testX)

sns.set_context(â??notebookâ??, font_scale=1.1)

sns.set_style(â??ticksâ??)

sns.lmplot(â??X1â??,â??X2', scatter=True, fit_reg=False, data=df, hue=â??Yâ??)

plt.ylabel(â??X2â??)

plt.xlabel(â??X1â??)

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X1â??, â??X2â??, â??X3â??, â??X4â??, â??Yâ??]

df = df.drop([â??X4â??, â??X3â??], 1)

df.head()

sns.set_style(â??ticksâ??)

sns.lmplot(â??X1â??,â??X2', scatter=True, fit_reg=False, data=df, hue=â??Yâ??)

plt.ylabel(â??X2â??)

plt.xlabel(â??X1â??)

neighbors = KNeighborsClassifier(n_neighbors=5)

X = df.values[:, 0:2]

Y = df.values[:, 2]

trainX, testX, trainY, testY = train_test_split( X, Y, test_size = 0.3)

neighbors.fit(trainX, trainY)

print(â??Accuracy: \nâ??, neighbors.score(testX, testY))

pred = neighbors.predict(testX)

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X1â??, â??X2â??, â??X3â??, â??X4â??, â??Yâ??]

df.head()

forest = RandomForestClassifier()

X = df.values[:, 0:4]

Y = df.values[:, 4]

trainX, testX, trainY, testY = train_test_split( X, Y, test_size = 0.3)

forest.fit(trainX, trainY)

print(â??Accuracy: \nâ??, forest.score(testX, testY))

pred = forest.predict(testX)

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X1â??, â??X2â??, â??X3â??, â??X4â??, â??Yâ??]

df = df.drop([â??X4â??, â??X3â??], 1)

df.head()

kmeans = KMeans(n_clusters=3)

X = df.values[:, 0:2]

kmeans.fit(X)

df[â??Predâ??] = kmeans.predict(X)

df.head()

sns.set_style(â??ticksâ??)

sns.lmplot(â??X1â??,â??X2', scatter=True, fit_reg=False, data=df, hue = â??Predâ??)

df = pd.read_csv(â??iris_df.csvâ??)

df.columns = [â??X1â??, â??X2â??, â??X3â??, â??X4â??, â??Yâ??]

df.head()

pca = decomposition.PCA()

fa = decomposition.FactorAnalysis()

X = df.values[:, 0:4]

Y = df.values[:, 4]

train, test = train_test_split(X,test_size = 0.3)

train_reduced = pca.fit_transform(train)

test_reduced = pca.transform(test)

pca.n_components_