Jyoti Nigania

Hi,i am writing blogs for our platform House of Bots on Artificial Intelligence, Machine Learning, Chatbots, Automation etc after completing my MBA degree. ...

Full Bio 

Hi,i am writing blogs for our platform House of Bots on Artificial Intelligence, Machine Learning, Chatbots, Automation etc after completing my MBA degree.

A Strong Determination Of Machine Learning In 2K19
13 days ago

Data Science: A Team Spirit
20 days ago

If You Are A Beginner Then Have Handy These Machine Learning Books To Gain Knowledge
21 days ago

Industry Automation Is Gearing Up Various Companies
23 days ago

Perks Of Becoming A Big Data Engineer Highlighted In A YouTube Video
29 days ago

These Computer Science Certifications Really Pay Good To You
117642 views

List Of Top 5 Programming Skills Which Makes The Programmer Different From Others?
115113 views

Which Programming Language Should We Use On A Regular Basis?
106287 views

Cloud Engineers Are In Demand And What Programming Language They Should Learn?
86415 views

Python Opens The Door For Computer Programming
65649 views

How can AI transform Digital Marketing?

By Jyoti Nigania |Email | Mar 23, 2018 | 6183 Views

AI has captured the imagination of marketers as much as the movie Star Wars captured the imagination of movie goers when it first came out. Last year Dave Isbitski, chief evangelist for Amazon, reached for the Star Wars character C3PO when he began his Yext Onward talk about AI and "voice driven everything." So the question arises that how the enormous fascination marketers are developing for AI lead to changes in analytics reporting.

Corporate leaders are certain deliberate with their AI fascination, even while acknowledging challenges. Respondents noted that AI would receive "more attention" as a significant data tool, despite over half or respondent also noting "insufficient tech" as an obstacle.
As a consequence AI-influenced martech components like image recognition, chatbots, and voice recognition are being added to websites and apps. AI has thus added more dynamic, and potentially correlated, actions for an analytics solution to track.

AI focuses on the broader concept of devices that act smart on a series of tasks. AI encompasses a larger set of algorithmic applications, machine learning is actually a subset of AI, despite the common usage of both terms interchangeably.
So measuring AI activity slightly shifts the analytical viewpoint from understanding nuanced details to asking about the significance of those details. So to use an analogy if machine learning is helping you gather the play by play details of a sports event, an AI output can help clarify the significance of those details. That perspective can help us understanding what to look for when examining AI marketing tech. Some examples on how this can work are as following:

Image recognition - AI analyzes the pixels in an image file to highlight significant differences that identify an object within the image. So an AI algorithm can detect, for example, if a dog, a car, or street sign is within an image.

Voice recognition - Similar to the image recognition process, AI examines file attributes; except in this case, the focus is on audio files. AI surfaces significant differences that identify the word being spoken

Chatbots - In chatbots software, AI, in the form of natural language processing NLP, responds to queries with answers.

In each of these scenarios, AI was applied to clarify the relevance and importance of results. 
A potential starting point is mobile engagement metrics from mobile-related visitor traffic. Smartphones are a key environment for image recognition, voice assistance, and access to chatbots, so measuring mobile user engagement verifies an audience exists for adopting the AI-tech in the first place. Despite the rise of mobile first indexing and increased smartphone usage for search, many businesses still have not adjusted their websites to be mobile friendly.
As for analytics dashboards, marketers should look for aids to clarifying their understanding of results. Marketers need to gain a sense of understanding of the dynamics behind the metrics.

Direct analytics for AI marketing tech are also available. For chatbots, marketers can use analytics platforms like Google Chatbase to understand what phrases are mentioned frequently, or what requests a chatbots has difficulty interpreting. It's amazing how fast AI marketing tech has become of mainstream relevance to business analytics. A smart strategy lead to analytics derived from AI applications supporting business concerns very well.

Source: Google News