Develop your skills in TensorFlow through these Courses

By ridhigrg |Email | Feb 10, 2020 | 4236 Views

Intro to TensorFlow
Offered By Google Cloud
About this Course
We introduce low-level TensorFlow and work our way through the necessary concepts and APIs so as to be able to write distributed machine learning models. Given a TensorFlow model, we explain how to scale out the training of that model and offer high-performance predictions using the Cloud Machine Learning Engine.

Course Objectives:
Create machine learning models in TensorFlow
Use the TensorFlow libraries to solve numerical problems
Troubleshoot and debug common TensorFlow code pitfalls
Use tf.estimator to create, train, and evaluate an ML model
Train, deploy and productional ML models at scale with Cloud ML Engine

TensorFlow: Data and Deployment Specialization
Offered By deeplearning.ai
About this Specialization
Continue developing your skills in TensorFlow as you learn to navigate through a wide range of deployment scenarios and discover new ways to use data more effectively when training your model.

In this four-course Specialization, you'll learn how to get your machine learning models into the hands of real people on all kinds of devices. Start by understanding how to train and run machine learning models in browsers and in mobile applications. Learn how to leverage built-in datasets with just a few lines of code, use APIs to control how data splitting, and process all types of unstructured data. Apply your knowledge in various deployment scenarios and get introduced to TensorFlow Serving, TensorFlow, Hub, TensorBoard, and more.

Industries all around the world are adopting AI. This Specialization from Laurence Moroney and Andrew Ng will help you develop and deploy machine learning models across any device or platform faster and more accurately than ever.

This Specialization builds upon skills learned in the TensorFlow in Practice Specialization. We recommend learners complete that Specialization prior to enrolling in TensorFlow: Data and Deployment.

Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning
Offered By deeplearning.ai
About this Course
If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. 

The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.

TensorFlow in Practice Specialization
Offered By deeplearning.ai
About this Specialization
Discover the tools software developers use to build scalable AI-powered algorithms in TensorFlow, a popular open-source machine learning framework.

In this four-course Specialization, you'll explore exciting opportunities for AI applications. Begin by developing an understanding of how to build and train neural networks. Improve a network's performance using convolutions as you train it to identify real-world images. You'll teach machines to understand, analyze, and respond to human speech with natural language processing systems. Learn to process text, represent sentences as vectors, and input data to a neural network. You'll even train an AI to create original poetry!

AI is already transforming industries across the world. After finishing this Specialization, you'll be able to apply your new TensorFlow skills to a wide range of problems and projects.

Machine Learning with TensorFlow on Google Cloud Platform Specialization
Offered By Google Cloud
About this Specialization
What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform.

Source: HOB