Rajendra

I write columns on news related to bots, specially in the categories of Artificial Intelligence, bot startup, bot funding.I am also interested in recent developments in the fields of data science, machine learning and natural language processing ...

Full Bio 
Follow on

I write columns on news related to bots, specially in the categories of Artificial Intelligence, bot startup, bot funding.I am also interested in recent developments in the fields of data science, machine learning and natural language processing

This asset class turned Rs 1 lakh into Rs 625 crore in 7 years; make a wild guess!
720 days ago

Artificial intelligence is not our friend: Hillary Clinton is worried about the future of technology
724 days ago

More than 1 lakh scholarship on offer by Google, Know how to apply
725 days ago

Humans have some learning to do in an A.I. led world
725 days ago

Human Pilot Beats Artificial Intelligence In NASA's Drone Race
726 days ago

Google AI can create better machine-learning code than the researchers who made it
73239 views

More than 1 lakh scholarship on offer by Google, Know how to apply
59946 views

13-year-old Indian AI developer vows to train 100,000 coders
41415 views

Pornhub is using machine learning to automatically tag its 5 million videos
37617 views

Rise of the sex robots: Life-like doll goes on sale for 15,000 pound
33597 views

The need of the hour is not to fear artificial intelligence, but understand its relevance

By Rajendra |Email | Sep 29, 2017 | 7773 Views

Conversations on Artificial Intelligence (AI) range from the extremely progressive views on the possibilities it offers to the other side of the spectrum where the chatter is all humdrum and the fear of losing jobs to machines overtakes everything else. Well, the fact is, both perspectives are right and matter equally.

Like with every new technology, changes due to advances in AI are difficult to comprehend in their entirety since there are more unknowns than knowns. I am of the firm belief that we are barely scratching the surface with AI and significantly far from reaching Singularity. Hence the need of the hour is not to fear AI and, instead, focus on understanding its relevance for our organizations and the human race at large. On that note, I've compiled a few myths that I often face during my advisory and consulting sessions with global end-user organizations.

Myth 1: Organizations don't really understand AI and it is something that we speak at events to take flights of fancy.

Hate to say it, but that's just not true. According to a recent Greyhound survey titled State of AI 2017, more than 53% large organizations globally (we interviewed 5,000 in 50 countries) are either already using AI for a project, conducting a proof of concept (PoC) or else planning to launch an initiative in the next 12 months. So, in other words, organizations are aggressively exploring ways and means to use AI over the next three to five years. But then, there's the other 47% who either remain unclear about the use-case for their organization or have inhibitions around data privacy, security and compliance, among other concerns. Having said that, all of these organizations (2,350 to be precise) confirmed a good understanding about AI in general.

Myth 2: AI will cause extensive unemployment and organizations will need fewer people in the years to come.

In my humble opinion, this is a gross misrepresentation of the impact of AI on organizations and structures. While it's fair to say AI is helping organizations automate basic tasks of repetitive nature, it's far (read decades) from reaching a level of maturity where AI (and robots) can replace humans in entirety. The above-mentioned survey confirms much the same. According to the survey, only 12% of the organizations surveyed believe they'll replace humans with AI and robots. In fact, a significant 68% confirmed their intent to hire more people to manage increased complexity arising out of the use of AI. Hence my assertion that the use of AI points to the need for newer skills, which can result in newer types of jobs rather than job losses.

Myth 3: Scale-out architecture (read cloud computing) is the best way to manage AI implementations.

This is something that, currently, only the most technically sound understand. But in my view, this is a critical stepping stone in the AI journey and hence needs to be well understood by most. Against popular perception, not all AI projects must use scale-out architectures based on central processing units (CPUs). Albeit those projects involving data from supervised learning are surely good use cases for scale-out architectures, the data from unsupervised and reinforced learning is mostly better managed on a distributed architecture using a combination of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs). In fact, in nine of my 10 advisory sessions, I see global organizations struggle with processing speed (when using CPUs) and cost of execution at scale (when using GPUs) while running Machine Learning (ML) algorithms. Hence the need for user organizations to remain wary of that sales pitch that bases all of AI use-cases on cloud.

Irrespective of whether we fully understand AI or not, it is a force that needs to be reckoned with. As organizations take their unique journeys with AI, they will have their fair share of learning and, over time, learn to use it for tactical advantages. It's the individuals here who need to sit up and take notice. Those who refuse to re-skill will surely fail to fit in the new world order and hence must be ready to miss the boat. In the end, the onus of being relevant in the era of AI is upon our own selves and not our employers.

Source: Live Mint