Rajendra

I write columns on news related to bots, specially in the categories of Artificial Intelligence, bot startup, bot funding.I am also interested in recent developments in the fields of data science, machine learning and natural language processing ...

Full Bio 
Follow on

I write columns on news related to bots, specially in the categories of Artificial Intelligence, bot startup, bot funding.I am also interested in recent developments in the fields of data science, machine learning and natural language processing

This asset class turned Rs 1 lakh into Rs 625 crore in 7 years; make a wild guess!
573 days ago

Artificial intelligence is not our friend: Hillary Clinton is worried about the future of technology
577 days ago

More than 1 lakh scholarship on offer by Google, Know how to apply
578 days ago

Humans have some learning to do in an A.I. led world
578 days ago

Human Pilot Beats Artificial Intelligence In NASA's Drone Race
579 days ago

Google AI can create better machine-learning code than the researchers who made it
71478 views

More than 1 lakh scholarship on offer by Google, Know how to apply
57909 views

13-year-old Indian AI developer vows to train 100,000 coders
39657 views

Pornhub is using machine learning to automatically tag its 5 million videos
36144 views

How to win in the AI era? For now, it's all about the data
27819 views

Artificial intelligence: Big data and invisible patients

By Rajendra |Email | Aug 28, 2017 | 4770 Views

If the barrier to precision medicine is data handling, then artificial intelligence (AI) may be the logical solution. Machine learning and deep learning are making inroads in a variety of industries, and seem poised to have a big impact in medicine, a process that is already in motion â?? and perhaps not a moment too soon.

"Your chance in your lifetime of getting a false diagnosis, if you look at the data, is 100 percent," said Thomas Wilckens, founder and CEO at InnVentis to the audience at the recently-concluded Precision Medicine Leadership Summit in San Diego. "There's a lot to improve."

Wilckens moderated Going Deep in the Fast Lane â?? the Rise of AI in Precision Medicine, which combined experts from industry and academia to parse this evolving segment. In some cases, these technologies have already arrived, though admittedly in rare silos.

"I started my company in Israel because they've had electronic medical records for more than 15 years, like in Estonia," said Wilckens. "These countries use algorithms to manage diseases, like diabetes. The patient doesn't even see a doctor until some computer pops out results, which possibly indicate some deterioration. They have algorithms in Estonia from the biobank that are almost spooky in predicting when people will deteriorate."

One of the underlying issues is whether the data is ready for AI. Atul Butte, who directs the Institute for Computational Health Sciences at UCSF, as well as being the executive director of clinical informatics for the entire UC health system, has some insights into these matters. He points to genomics and electronic health records as excellent sources.

"More data is always good, but I'm a believer we have amazing data right now," Butte said. "We actually don't have enough people using the data right now. The real danger is to wait for perfection. That's where the Voltaire quote comes in: Perfection is the enemy of the good. We are at good right now."

This includes data from insurance claims, electronic health records, imaging, genotyping, cancer genetics and clinical research â?? like the Framingham Heart Study.

There's also the potential to mine massive amounts of plain vanilla online data to get intriguing results.

"The real opportunity of all that data is not the patients who are already sick, it's identifying and understanding those who are currently not touching the system," said Nick van Terheyden, founder, and CEO of Incremental Healthcare. "All the invisible patientsâ?¦that we can identify based on that additional data setâ?¦"

A recent paper used Instagram photos to detect juvenile depression. Another study mined Bing search engine data to identify people with undetected cancer.

"Eric's (Eric Horvitz, senior author) finding was that, based on a consumer's search patterns, he was able to, with a high degree of accuracy, find people with undiagnosed pancreatic cancer based on their web browsing," said Simon Kos, chief medical officer at Microsoft.

While data dragnets can find useful, perhaps even lifesaving information, they can also produce unwanted insights and privacy concerns. But there's also the issue of reciprocal data sharing. How much de-identified data should hospitals be sharing with industry and vice versa. It may not be a level playing field.

"Why doesn't Microsoft put out a de-identified list of their customers?" asked Butte. "You guys sell Windows to people; you guys sell Office to people. Why can't I download that data set? I see tech companies always asking us to share data, but they themselves never share data."

Ultimately, the sector needs to learn to crawl before it can walk. AI in healthcare is being test driven outside of patient care â?? in finance, for example.

"We've done a lot of work around the use of predictive analytics with healthcare providersâ?¦to advance AI for precision medicine when it moves into clinical practice," said Andy Bartley, senior solutions architect for Health and Life Sciences at Intel. "Predictive is where we're seeing a lot of adoption right now."

Source: Medcity News