Deep Learning Books beginners should note

By ridhigrg |Email | Nov 15, 2019 | 1326 Views

Deep Learning (Adaptive Computation and Machine Learning series) Hardcover - 3 Jan 2017
by Ian Goodfellow 
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives."Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human-computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Neural Networks and Deep Learning: A Textbook 1st ed. 2018 Edition, Kindle Edition
by Charu C. Aggarwal  (Author)
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. 

Deep Learning Cookbook: Practical Recipes to Get Started Quickly 1st Edition, Kindle Edition
by Douwe Osinga 
Deep learning doesn't have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you'll learn how to solve deep-learning problems for classifying and generating text, images, and music.

Each chapter consists of several recipes needed to complete a single project, such as training a music recommending the system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you're stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks.

Introduction to Deep Learning (The MIT Press) [Print Replica] Kindle Edition
by Eugene Charniak 
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. "I find I learn computer science material best by sitting down and writing programs,"the author writes, and the book reflects this approach.

Source: HOB